Implementasi Video Telephony melalui Jaringan WiMAX menggunakan Controlled Delay

Theo Rama Putra, Ahmad Fali Oklilas


Worldwide Interoperability for Microwave Access atau yang disingkat dengan WiMAX merupakan teknologi jaringan Wireless yang memiliki jangkauan yang luas hingga 50 km dengan kecepatan akses hingga 70 Mbps. WiMAX terintegrasi dengan konsep QoS. Konsep QoS yang dimiliki oleh WiMAX berupa service class. WiMAX mendukung aplikasi real- time yang salah satunya adalah video telephony. Video telephony adalah aplikasi real-time yang memungkinkan pengguna dapat bertatap muka dan berbicara secara langsung. Parameter yang mempengaruhi kualitas video telephony adalah delay dan packet loss. Agar kedua parameter ini dapat diminimalisir, penelitian ini akan digunakan mekanisme Controlled Delay pada WiMAX dengan tujuan peningkatan kualitas layanan pada video telephony.


WiMAX; Video Telephony; Controlled Delay; QoS

Full Text:



R. Prasad and F. J. Velez, WiMAX Networks, vol. 58, no. 12. Dordrecht: Springer Netherlands, 2010.

D. R. Selvarani and T. N. Ravi, “Comparative analysis of Wi-Fi and WiMAX,” in International Conference on Information Communication and Embedded Systems (ICICES2014), 2014, no. 978, pp. 1–7.

J. Ben-Othman and L. Mokdad, “Improving QoS for UGS, rtPS, nrtPS, BE in WIMAX networks,” in 2011 International Conference on Communications and Information Technology (ICCIT), 2011, pp. 23–27.

S. Jadhav, H. Zhang, and Z. Huang, “Performance Evaluation of Quality of VoIP in WiMAX and UMTS,” in 2011 12th International Conference on Parallel and Distributed Computing, Applications and Technologies, 2011, pp. 375–380.

Y. Xu, C. Yu, J. Li, and Y. Liu, “Video telephony for end-consumers: Measurement study of Google+, iChat, and Skype,” IEEE/ACM Trans. Netw., vol. 22, no. 3, pp. 826–839, 2014.

T. Samanchuen and S. Kiattisin, “Implementation and quality evaluation of video telephony using Session Initiation Protocol,” in 2014 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2014, 2014, pp. 3–6.

A. Ribadeneira, “An Analysis of the MOS Under Conditions of Delay, Jitter and Packet Loss and an Analysis of the Impact of Introducing Piggybacking and Reed Solomon FEC,” 2007.

B. A. Forouzan and S. C. Fegan, Data Communications and Networking, Fourth Edition, vol. 32, no. 7. New York: McGraw-Hill, 2007.

J. A. Zubairi, E. Erdogan, and S. Reich, “Experiments in fair scheduling in 4G WiMAX and LTE,” Proc. 2015 Int. Conf. High Perform. Comput. Simulation, HPCS 2015, pp. 277–282, 2015.

V. Richter, R. Radeke, and R. Lehnert, “QoS concept for IEEE 802.16-2012 based WiMAX networks,” Int. Conf. Wirel. Mob. Comput. Netw. Commun., pp. 371–377, 2014.

L. Ma, W. Chen, D. Veer, G. Sternberg, W. Liu, and Y. Reznik, “Early packet loss feedback for webrtc-based mobile video telephony over Wi-Fi,” 2015 IEEE Glob. Commun. Conf. GLOBECOM 2015, 2016.

K. Ramasamy, G. Sainarayanan, and S. N. Deepa, “Perceptual video quality based bitrate control for broadband video telephony applications,” Proceeding IEEE Int. Conf. Green Comput. Commun. Electr. Eng. ICGCCEE 2014, 2014.

B. Li and S. Park, “Power saving scheduling with QoS guarantee in IEEE 802.16e networks,” in TENCON 2014 - 2014 IEEE Region 10 Conference, 2014, pp. 1–6.

I. A. Lawal, A. M. Said, K. Nisar, A. A. Mu’azu, and P. A. Shah, “Throughput enhancement for fixed WiMAX network using distributed model,” in 2014 International Conference on Computer and Information Sciences (ICCOINS), 2014, pp. 1–6.

S. Jana, E. Baik, A. Pande, and P. Mohapatra, “Improving mobile video telephony,” 2014 11th Annu. IEEE Int. Conf. Sensing, Commun. Networking, SECON 2014, pp. 495–503, 2014.

N. Gorbenko, E. Jean-Pierre, W. Almuhtadi, and A. Srinivasan, “Comparison of simulated and real network traffic results for multimedia streaming over WiMAX networks with QoS scheduling,” in 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE), 2015, pp. 1324–1328.

M. Alreshoodi, E. Danish, J. Woods, A. Fernando, and F. Alarfaj, “QoE-enabled efficient resource allocation for H.264 video streaming over WiMAX,” in 2016 IEEE International Conference on Consumer Electronics (ICCE), 2016, pp. 251–252.

K. R. Shenthil Kumar and L. Nithyanandan, “Medical video communication using modified HEVC over WiMAX network,” Int. Conf. Commun. Signal Process. ICCSP 2014 - Proc., pp. 808–812, 2014.

Pradishta.D, Jothimohan.B, and Ponraj.A, “Dynamic QoS-based optimized video transmission in WiMAX networks,” in 2014 International Conference on Communication and Signal Processing, 2014, pp. 1209–1213.

T. Jain, B. Annappa, and M. P. Tahiliani, “Performance evaluation of CoDel for active queue management in wired-cum-wireless networks,” Int. Conf. Adv. Comput. Commun. Technol. ACCT, pp. 381–385, 2014.

D. M. Raghuvanshi, B. Annappa, and M. P. Tahiliani, “On the effectiveness of CoDel for active queue management,” Int. Conf. Adv. Comput. Commun. Technol. ACCT, pp. 107–114, 2013.

T. Sharma, “Controlling Queue Delay ( CoDel ) to counter the Bufferbloat Problem in Internet,” Int. J. Curr. Eng. Technol., vol. 4, no. 3, pp. 2210–2215, 2014.

F. Schwarzkopf, S. Veith, and M. Menth, “Performance analysis of CoDel and PIE for saturated TCP sources,” Proc. 28th Int. Teletraffic Congr. ITC 2016, vol. 1, pp. 175–183, 2017.

I. Jarvinen and M. Kojo, “Evaluating CoDel, PIE, and HRED AQM techniques with load transients,” in 39th Annual IEEE Conference on Local Computer Networks, 2014, pp. 159–167.

M. Hanai, S. Yamaguchi, and A. Kobayashi, “Modified Controlling Queue Delay for TCP fairness improvement,” 18th Asia-Pacific Netw. Oper. Manag. Symp. APNOMS 2016 Manag. Softwarized Infrastruct. - Proc., 2016.


  • There are currently no refbacks.