Klasifikasi Penyakit Diabetik Retinopathy dengan Metode Naïve Bayes pada Citra Retina

Erwin Erwin, Laras Azrisa Nurjanah, Yurika Yurika, Dea Sella Noviyanti

Abstract


Diabetik retinopathy (DR) merupakan efek dari diabetes yang terjadi karena kerusakan pembuluh darah retina dengan memperbesar dan mengeluarkan cairan komplikasi diabetes yang mempengaruhi mata. Deteksi penyakit ini dapat dilihat melalui eksudat dan mikroaneurisma. Pada penelitian ini kami menggunakan metode Naïve Bayes untuk pengklasifikasian  menggunakan tiga kelas klasifikasi yaitu Normal, NPDR, dan PDR. Dari hasil penelitian mendapatkan akurasi 93%.

Keywords


Diabetik Retinopathy; Naïve Bayes; Klasifikasi; Eksudat; Mikroaneurisma.

Full Text:

PDF

References


M. Jahiruzzaman and A. B. M. A. Hossain, “Detection and classification of diabetic retinopathy using K-means clustering and fuzzy logic,” Int. Conf. Comput. Inf. Technol., pp. 534–538, 2015.

S. M. Raju Maher, Sangramsing Kayte, Dnyaneshwar Panchal, Pankaj Sathe, “A decision support system for automatic screening of non-proliferative diabetic retinopathy,” J. Med. Syst., vol. 35, no. 1, pp. 17–24, 2015.

H. Pratt, F. Coenen, D. M. Broadbent, S. P. Harding, and Y. Zheng, “Convolutional Neural Networks for Diabetic Retinopathy,” Procedia Comput. Sci., vol. 90, pp. 200–205, 2016.

M. P. Paing, S. Choomchuay, and M. D. Rapeeporn Yodprom, “Detection of lesions and classification of diabetic retinopathy using fundus images,” BMEiCON 2016 - 9th Biomed. Eng. Int. Conf., pp. 1–5, 2017.

R. M. B. T.P. Udhaya Sankar, R. Vijai, “Detection and Classification of Diabetic Retinopathy in Fundus Images using Neural Network,” Int. Res. J. Eng. Technol., vol. 5, no. 4, pp. 2630–2635, 2018.

A. V. Deshmukh, T. G. Patil, S. S. Patankar, and J. V. Kulkarni, “Features based classification of hard exudates in retinal images,” 2015 Int. Conf. Adv. Comput. Commun. Informatics, ICACCI 2015, pp. 1652–1655, 2015.

H. Tjandrasa, I. Arieshanti, and R. Anggoro, “Classification of Non-Proliferative Diabetic Retinopathy Based on Segmented Exudates using K-Means Clustering,” Int. J. Image, Graph. Signal Process., vol. 7, no. 1, pp. 1–8, 2015.

P. B. Kale and N. Janwe, “Detection and Classification of Diabetic Retinopathy in Color Fundus Image,” Int. J. Res. Adv. Comput. Sci. Eng., no. 7, pp. 1–4, 2017.

J. Amin, M. Sharif, M. Yasmin, H. Ali, and S. L. Fernandes, “A method for the detection and classification of diabetic retinopathy using structural predictors of bright lesions,” J. Comput. Sci., vol. 19, pp. 153–164, 2017.

R. A. Welikala et al., “Genetic algorithm based feature selection combined with dual classification for the automated detection of proliferative diabetic retinopathy,” Comput. Med. Imaging Graph., vol. 43, pp. 64–77, 2015.

J. Lachure, A. V. Deorankar, S. Lachure, S. Gupta, and R. Jadhav, “Diabetic Retinopathy using morphological operations and machine learning,” 2015 IEEE Int. Adv. Comput. Conf., pp. 617–622, 2015.

S. D. Jadhav and H. P. Channe, “Comparative Study of K-NN , Naive Bayes and Decision Tree Classification Techniques,” vol. 5, no. 1, 2016.


Refbacks

  • There are currently no refbacks.