Visualisasi Serangan Brute Force Menggunakan Metode K-Means dan Naive Bayes

Sari Sandra, Deris Stiawan, Ahmad Heryanto

Abstract


Penelitian ini menyajikan visualisasi dalam bidang two dimensional (2D) untuk mengkategorikan paket ISCX dan DARPA dataset. Paket data akan dibedakan dalam dua kategori yaitu paket data attack dan paket data normal berdasarkan pattern serangan brute force. Serangan brute force melakukan penyerangan pada beberapa layanan protokol seperti secure shell (SSH) dan telecommunication network (Telnet). Pada ISCX dataset serangan brute force terjadi pada layanan SSH , sedangkan DARPA dataset terjadi pada layanan TELNET.
Metode K-Means dan metode Naïve Bayes diimplementasikan pada penelitian ini untuk mendapatkan hasil pengkategorian yang efektif Hasil akhir dari penelitian menunjukkan metode yang digunakan mendapatkan hasil yang baik dalam hal accuracy dengan mengurangi false alarm yang terjadi.

Keywords


Visualisasi, ISCX dataset, DARPA dataset, Brute force, Metode K-Means dan Metode Naïve Bayes

Full Text:

PDF

References


D. Dede, “Most Common Attacks Affecting Today ’ s Website,”

Sucuri Blog, 2014. [Online]. Available:

https://blog.sucuri.net/2014/11/most-common-attacks-affectingtodays-websites.html. [Accessed: 20-May-2016].

M. M. Najafabadi, T. M. Khoshgoftaar, C. Kemp, N. Seliya, and R.

Zuech, “Machine learning for detecting brute force attacks at the

network level,” Proc. - IEEE 14th Int. Conf. Bioinforma. Bioeng.

BIBE 2014, pp. 379–385, 2014.

Calyptix, “Follow us ork Attack Types in 2015,” 2015. [Online].

Available: http://www.calyptix.com/top-threats/top-7-networkattack-types-in-2015-so-far/. [Accessed: 20-May-2016].

E. Haryanto, “Meningkatkan Keamanan Port SSH dengan Metode

Port Knocking Menggunakan Shorewall Pada Sistem Operasi

Linux,” Journal of Chemical Information and Modeling, vol. 53, no.

pp. 1689–1699, 2013.

V. Kumar, H. Chauhan, and D. Panwar, “K-Means Clustering

Approach to Analyze NSL-KDD Intrusion Detection Dataset,” Int. J.

Soft Comput. Eng., vol. 3, no. 4, pp. 1–4, 2013.

W. Brute and F. Report, “WordPress Brute Force Attacks,” Sucuri

Blog, 2016. [Online]. Available: https://sucuri.net/securityreports/brute-force/. [Accessed: 29-Feb-2016].

M. Kumagai, Y. Musashi, D. A. L. Roma??a, K. Takemori, S.

Kubota, and K. Sugitani, “SSH dictionary attack and DNS reverse

resolution traffic in campus network,” Proc. - 3rd Int. Conf. Intell.

Networks Intell. Syst. ICINIS 2010, pp. 645–648, 2010.

W. Yassin, N. I. Udzir, and Z. Muda, “Anomaly-Based Intrusion

Detection Through K- Means Clustering and Naives Bayes

Classification,” Proc. 4th Int. Conf. Comput. Informatics, ICOCI

, no. 49, pp. 298–303, 2013.

H. Choi, H. Lee, and H. Kim, “Fast detection and visualization of

network attacks on parallel coordinates,” Comput. Secur., vol. 28,

no. 5, pp. 276–288, 2009.

a M. Riad, I. Elhenawy, A. Hassan, and N. Awadallah, “V Isualize

N Etwork a Nomaly D Etection B Y U Sing K- Means C Lustering a

Lgorithm,” vol. 5, no. 5, pp. 195–208, 2013.

R. Zuech, T. M. Khoshgoftaar, N. Seliya, M. M. Najafabadi, and C.

Kemp, “A New Intrusion Detection Benchmarking System,” Proc.

Twenty-Eighth Int. Florida Artif. Intell. Res. Soc. Conf., no.

McHugh, pp. 252–255, 2015.

H. H. Jebur, M. A. Maarof, and A. Zainal, “Jurnal Teknologi Full

paper Identifying Generic Features of KDD Cup 1999 for Intrusion

Detection,” vol. 1, pp. 1–9, 2015.

K. S. A. Kahtani, “Improving Snort performance under Linux,” no.

April, 2009.

Y. Agusta, “K-Means - Penerapan, Permasalahan dan Metode

Terkait,” J. Sist. dan Inform., vol. 3, no. Pebruari, pp. 47–60, 2007.

A. Jananto, “Algoritma Naive Bayes untuk Mencari Perkiraan

Waktu Studi Mahasiswa P ( H | X ) P ( X | H ) P ( H ),” vol. 18, no.

, pp. 9–16, 2013.


Refbacks

  • There are currently no refbacks.